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order term. A transformation of the entire expansion to
fourier space would result in integrals with many of theThis paper presents the closed form evaluation of a six-dimen-

sional integral. The integral arises in the application to many-elec- same features as the one in Eq. (1) and the techniques
tron systems of a multiple scattering perturbation expansion at presented here could be applied to the general higher order
second order when formulated in fourier space. The resulting func- term. Although systematic evaluation of higher order
tion can be used for the calculation of both the electron density and

terms in a perturbative expansion is not expected to bethe effective one-electron potential in an SCF calculation. The closed
productive, there is another possible benefit of work in thisform expression derived here greatly facilitates these calculations.

In addition, the evaluated integral can be used for the computation direction. A general formal expression could be derived
of second-order corrections to the ‘‘optimized Thomas–Fermi for the nth-order term and, after introducing a suitable
theory.’’ Q 1997 Academic Press approximation, a rearrangement and summation to infinite

order might be possible. It may be possible to obtain a
highly accurate integral expression for the electron densityI. INTRODUCTION
in this way. One can draw an analogy to the work of Gell-
Mann and Brueckner [7] in which just such a summationThis paper presents the closed form evaluation of the
is performed in a perturbative expansion.function defined by

For these reasons, a closed form solution of the integrals
in Eq. (1) is presented. The integrations are rather compli-
cated and their evaluation is by no means direct. EvenL(kF , k9, k0) 5

m2k2
F

4f 4"4(2f)6
with the closed form solution, it is necessary to address
some subtle issues that arise due to the multiple-valuedE d 3r9d 3r0eik9?r9eik0?r0 j1[kF(r9 1 ur9 2 r0u 1 r0)]

r9ur9 2 r0ur0
. nature of the solution. The details are presented in this

paper.
(1)

II. REDUCTION TO THREEThis function is encountered in the application of multiple
DIMENSIONAL INTEGRALSscattering perturbation theory [2, 3] at second order when

formulated in fourier space. The specific problem in which
As written, Eq. (1) is not amenable to direct integration.this arose was the computation of the electron density of

However, the introduction of some integral identities leadsthe embedded atom [1], although it would arise for any
to a tractable expression. The first identity is for the spheri-many-electron problem. The use of a closed form expres-
cal Bessel functionsion greatly enhances the speed of the computation. A

further use of this function is in the second-order correction
to the closely related optimized Thomas–Fermi (OTF) j1(kFz) 5 2

i
2k 2

F
E

Gx

xe ixz dx, (2)
theory [4, 5]. It has been observed [6] that the OTF electron
density is noticeably improved with the second-order cor-
rection and that routine evaluation would be worthwhile. where kF is a positive real number, z is an arbitrary complex

number, and Gx is a contour in the complex-x plane thatA closed form expression for Eq. (1) would facilitate the
computation of this correction. begins on the real axis at 2kF , goes above the real axis,

and ends back on the real axis at kF (see Fig. 1a). TheAn interesting point for further investigation is that the
higher order terms in the multiple scattering perturbation standard identity for the spherical Bessel function [8] has

an integration path that is strictly on the real axis. Thetheory expansion share some features with the second-
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FIG. 1. Contours used in the integrals of Eq. (5): (a) Gx ; (b) Gu .

deformed path used here, though, has two advantages. E
Gx

x dx
(x 2 2 a2)(x 2 2 b2)(x 2 2 c2)First, it allows the introduction of the integral represen-

tation
5

1
2
E

Gu

du
(u 2 a2)(u 2 b2)(u 2 c2)

(5)e ixur92r0u

ur9 2 r0u
5 2

1
2f 2 E d 3q

eiq?(r92r0)

x 2 2 q 2. (3)
5 2fi H h(kF 2 uau)

(a2 2 b2)(a2 2 c2)
1

h(kF 2 ubu)
(b2 2 a2)(b2 2 c2)

The positive imaginary part of x ensures that the correct 1
h(kF 2 ucu)

(c2 2 a2)(c2 2 b2)J,
pole of the integrand is surrounded by the path of integra-
tion in q. Second, the radial integrals over r9 and r0 become
absolutely convergent when the imaginary part of x is posi- where h(z) is the Heaviside function. Applying this to Eq.
tive. Introducing the two integral representations (2) and (4) and performing a little rearrangement,
(3) and performing the resulting integrals over r9 and r0,
we obtain

L(kF , k9, k0) 5
m2

f3"4(2f)6 hF(kF , k9, 2k0)
(6)

L(kF , k9, k0) 5
im2

f 4"4(2f)6 E d 3q 1 F(kF , k9, k9 1 k0) 1 F(kF , k0, k9 1 k0)j,

E
Gx

x dx
(x 2 2 q2)(x 2 2 uq 1 k9u2)(x2 2 uq 2 k0u2)

. where a new function has been introduced:

(4)
F(kF , k, k9) 5 E

q,kF

d 3q
(q2 2 uq 1 ku2)(q2 2 uq 1 k9u2)

. (7)

The integral over x can now be performed by contour
integration. We introduce the new integration variable,

III. EVALUATION OF F(kF , k, k9)u 5 x 2. Based on the path specified for x, the path of
integration in u begins at u 5 k 2

F on the positive real axis,
continues below the real axis toward the origin, goes Evaluation of this integral is complicated by the fact that

the integrand contains divergences if kF is larger than eitheraround the origin in a clockwise direction, and continues
above the positive real axis to u 5 k 2

F (see Fig. 1b). Denote k/2 or k9/2. Dealing with divergences is generally a straight-
forward process, but in this case, the singularity structurethis closed contour by Gu . The theorem of residues can

then be used to evaluate the integral. For real a, b, and c, of the integrand leads to multiple-valued functions after
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integration. Some care must be exercised in picking out The integrals over q are easily evaluated after this iden-
tity is introduced, and we obtainthe correct branch to use for the final result.

This three-dimensional integral can be evaluated in two
quite different ways. It is possible to perform the integrals

F(kF , k, k9)directly; the necessary indefinite integrals are all either
tabulated or readily worked out. The process is laborious,
however. It is necessary to keep track of the relative sizes 5 fkF E

Gz

dz
ukz 1 k9(1 2 z)u2 H (k2z 1 k92(1 2 z)

4kF ukz 1 k9(1 2 z)uof the vectors, the signs of certain terms, and the correct
limits over which the integration is performed. An alterna-
tive approach will be presented here. It is worth mentioning 3 ln Sk2z 1 k92(1 2 z) 1 2kF ukz 1 k9(1 2 z)u

k2z 1 k92(1 2 z) 2 2kF ukz 1 k9(1 2 z)uD2 1J.
here that both approaches lead to the same result, provid-
ing a check on the correctness of the solution.

(10)Equation (7) is more easily evaluated after introducing
another integral identity. There is a subtle problem in-
volved, though, that must be addressed. For real, positive

In evaluating the final integral, it is convenient to firsta and b, we can write
reduce some of the clutter by introducing the quantities

a 5 k92, a 5 k921
ab

5 E1

0

dz
[az 1 b(1 2 z)]2. (8)

b 5 k2 2 k92, b 5 k9 ? (k9 2 k) (11)

c 5 uk 2 k9u2.
For the problem at hand, however, we wish to apply this
identity to situations where a and b are of arbitrary sign.

Equation (10) then becomesIf a and b are both negative, it is easily seen that Eq. (8)
is still valid. If a and b have opposite signs, however, there
is a divergence in the integrand that renders the integral F(kF , k, k9)
undefined. One might consider using the same expression
with a replaced by 2a, for instance, but this would lead
to an awkward situation in which the relative signs of the 5 fkF E

Gz

dz
(a 2 2bz 1 cz2) H a 1 bz

4kF [a 2 2bz 1 cz2]1/2
two factors must be monitored. This would lead to great
complications, especially when the two factors are inte-

3 ln Sa 1 bz 1 2kF [a 2 2bz 1 cz2]1/2

a 1 bz 2 2kF [a 2 2bz 1 cz2]1/2D2 1Jgrated over, as they are here.
The solution is to introduce a contour, Gz , that begins

at 0, ends at 1, and avoids the real axis in between.
5

f
4 H (ac 1 bb)z 2 (ab 1 ba)

(ac 2 b2)[a 2 2bz 1 cz2]1/2

(12)
There can be no objection to this deformation if a and
b have the same sign, but there is an immediate ambiguity
if they have opposite signs. Going below or above the

3 ln Sa 1 bz 1 2kF [a 2 2bz 1 cz2]1/2

a 1 bz 2 2kF [a 2 2bz 1 cz2]1/2Dsingularity must lead to different results, since the integral
over a closed contour around the singularity does not
vanish. However, the ambiguity is in the imaginary part

1
H

ac 2 b2 ln SH 1 G(z)
H 2 G(z)DJUGz

,of the result and can be conveniently discarded at the
end. The integral representation used is therefore given
by

where
G(z) 5 (ab 1 4k2

Fb 1 (b2 2 4k2
Fc)z)

H 5 [(a2c 1 2abb 1 b2a) 2 4k2
F (ac 2 b2)]1/2.

(13)1
ab

5 E
Gz

dz
[az 1 b(1 2 z)]2, (9)

That Eq. (12) is the correct indefinite integral can be veri-
fied by differentiation of the right-hand side. The right-where it is understood that the contour does not touch the

real axis, except at the end points, and that only the real hand side is then evaluated at the limits and the vector
quantities are reintroduced. The final result ispart of the result is to be retained.
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F(kF , k, k9) uk9 2 k0u # k # (k9 1 k0). A further simplification is
obtained if the reduced quantities

5
f

4uk 3 k9u2 Hkk9 ? (k9 2 k) ln Uk 1 2kF

k 2 2kF
U

(14)
x 5 k/2kF

x9 5 k9/2kF (16)
1 k9k ? (k 2 k9) ln Uk9 1 2kF

k9 2 2kF
U

x0 5 k0/2kF

1 D1/2 ln S4k2
Fk ? k9 2 k2k92 1 2kFD1/2

4k2
Fk ? k9 2 k2k92 2 2kFD1/2DJ, are introduced. In this way, the dependence of the function

on kF can be explicitly extracted. We then obtain

where
L(kF , k9, k0) 5

m2

2f3kF "4(2f)6 l(x, x9, x0), (17)

D 5 k2k92uk 2 k9u2 2 4k2
Fuk 3 k9u2. (15) where

Only the real part of Eq. (14) is to be retained. For this
l(x, x9, x0) 5

f
p H(2x2 1 x92 1 x02)x ln Ux 1 1

x 2 1Ureason, absolute value signs have been placed about the
arguments of the logarithms in the first two terms. In the
last term, though, this cannot be done since the quantity

1 (x2 2 x92 1 x02)x9 ln Ux9 1 1
x9 2 1U

(18)
D can be either positive or negative. The logarithm is a
multiple valued function, evaluation of which is ambiguous
by a multiple of if. If D is positive, this ambiguous term 1 (x2 1 x92 2 x02)x0 ln Ux0 1 1

x0 2 1Ucan be discarded and absolute value signs used around
the logarithm’s argument. If D is negative, however, the
argument of the logarithm is complex. Further, the magni- 1 d 1/2 ln Sa 2 bd1/2

a 1 bd1/2DJ
tude of the argument is one, so that the logarithm itself is
purely imaginary. Multiplication by D1/2, which is also
purely imaginary, then yields a purely real result. The prob- and
lem is that the ambiguity in the logarithm makes a real
contribution to the result. It cannot be simply dropped and p 5 (x 1 x9 1 x0)(2x 1 x9 1 x0)(x 2 x9 1 x0)(x 1 x9 2 x0)
the proper multiple to use in the final expression must

d 5 x2x92x02 2 p/4be determined based on the physical constraints of the
problem at hand. Rather than determine this multiple for a 5 x2x92x02 1 !s(x4 1 x94 1 x04) 2 (x2 1 x92 1 x02) 1 1
F(kF , k, k9), however, the functions will be combined in

b 5 x2 1 x92 1 x02 2 2.Eq. (6) and the correct multiple deduced for the overall
function. (19)

The physical constraints on the three variables are thatIV. RECOMBINATION AND CHOICE OF BRANCH
they all be nonnegative and satisfy the triangle inequality,

Equation (6) expresses L(kF , k9, k0) as a sum of three ux9 2 x0u # x # (x9 1 x0).
terms, each of which can be evaluated using Eq. (14). The In certain circumstances, it is convenient to substitute
recombination of these terms is performed via a straight- two new variables, u and v, for x9 and x0. The old and new
forward, although tedious, exercise in algebra. Part of this variables are related by
task was performed with a symbolic mathematics program
[10]. The result is a function that, aside from kF , depends x9 5 !sx(u 1 v).

(20)on the two vector magnitudes, k9 and k0, and the angle
x0 5 !sx(u 2 v).between them (or equivalently, its cosine). It turns out that

a more symmetrical expression is obtained by replacing
the angle between the vectors by a third vector magni- With the hope that no confusion will occur, the function

of the new variables will be denoted by l(x, u, v). Thetude, given by k 5 uk9 1 k0u. The three vector magnitudes
are physically constrained by the triangle inequality, function is given explicitly by
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l(x, u, v) nary and should be neglected. Since the argument of the
logarithm is real in this case, we can obtain an unambiguous
result by simply putting absolute value signs around it.5

f
2p H(22 1 u2 1 v2)x3 ln Ux 1 1

x 2 1U When d is negative, however, the extra term is multiplied
by an imaginary square root. Which branch is chosen will
affect the value of the result. An important task is therefore1 (1 2 uv)(u 1 v)x3 ln Ux(u 1 v) 1 2

x(u 1 v) 2 2U (21)
to identify where d is negative and, further, to investigate
the behavior of the other parameters, a and b, in this region.

Suppose x has a given value and we wish to investigate1 (1 1 uv)(u 2 v)x3 ln Ux(u 2 v) 1 2
x(u 2 v) 2 2U the behavior of s1 in the (u, v)-plane. If x . 1, it is easily

shown that d is everywhere positive. The evaluation of s1

1 2d 1/2 ln Sa 2 bd 1/2

a 1 bd 1/2DJ, in such cases is straightforward. Therefore, suppose that
x , 1. For u sufficiently close to 1 and for sufficiently large
u, d is positive. In between, there is a region where d is

where now negative, bordered by the two curves.

p 5 x4(u2 2 1)(1 2 v2)
u6

d 5 Fv2 1
2(1 2 v2)

x 2 (1 6 [1 2 x 2]1/2)G1/2

. (24)
d 5

x6(u2 2 v2)2

16
2 p/4

There is no other region for acceptable values of u and v,
a 5

x6(u2 2 v2)2

16
1

x4(u4 1 6u2v2 1 v4 1 8)
16 (22)

where d is negative.
The parameter b is negative for small values of u and

positive for larger values. The dividing line is given by
2

x2(u2 1 v2 1 2)
2

1 1
the curve

b 5
x2(u2 1 v2 1 2)

2
2 2.

ub 5 F 4
x 2 2 (v2 1 2)G1/2

. (25)

A convenient feature of the new variables is that their
This can be shown to cross the u6

d curve at two points,physical limits are independent of the other variables: 0 ,
(v6

s , us), wherex; 1 , u; and 21 , v , 1. Another useful property is that,
viewing l(x, u, v) as a purely mathematical function, it is
found to be symmetric with respect to interchange of the v6

s 5 6 F1 2 [1 2 x 2]1/2

1 1 [1 2 x 2]1/2G1/2

(26)
two variables u and v.

It is now time to consider the proper branch to use for
the multiple-valued function. The ultimate criterion will us 5

[2 2 x 2 1 2[1 2 x 2]1/2]1/2

x
.

be to require that the function be continuous in all its
variables. This seems reasonable in view of the original

With a little algebra, a can be shown to be nonnegativedefinition of the function in Eq. (1). Continuous variation
everywhere along the border where d 5 0. Further, it isof the vectors k9 and k0 should result in a continuous
positive wherever d is positive. In the region where d isvariation of the function itself. This does not require
negative, though, there is one region where a is negative.smooth behavior, however, and, indeed, it is impossible to
region contains the curve where b 5 0 and touches theobtain a solution which is everywhere smooth. However,
curve u6

d at precisely the two points (v6
s , us). A plot ofwe can determine the behavior of the function for one

these regions for x 5 0.88 is given in Fig. 2.limiting case and then extend this behavior continuously
As already mentioned, in the regions where d . 0, theto all other cases.

computation of s1 is unambiguous. Further, when d , 0,The awkwardness is confined to the term
it is a straightforward and unambiguous matter to ensure
continuity of the function as the parameters, a and b,
change sign. The situation is no longer unambiguous whens1 5 d 1/2 ln Sa 2 bd 1/2

a 1 bd 1/2D, (23)
considering its behavior when crossing the boundary where
d changes sign. By definition, s1 is necessarily continuous
when crossing this boundary regardless of which branch iswhere the logarithm can be evaluated up to an arbitrary

multiple of if. When d is positive, the extra term is imagi- chosen for the logarithm. However, for the function to be
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smooth as well, only one choice of branch is possible. values of x. The consequence of this is that the function
Unfortunately, it is not possible to ensure smooth behavior is smooth as d changes sign when b , 0. Continuity is then
along the entire curve where d 5 0. Although a is necessar- enforced for all other regions of the (u, v)-plane.
ily nonnegative along this curve, b may have either sign. Note that the points (v6

s , us) are special. Going entirely
Requiring l(x, u, v) to be smooth when crossing the d 5 around either point alone, continuous behavior causes the
0 curve for b , 0 and requiring continuity elsewhere leads function to return with a different value. On the other
to a nonsmooth transition when the border is crossed for hand, going entirely around both points causes the function
b . 0. A similar situation is encountered when smooth to return with the same value. Viewing the (u, v)-plane as
behavior is required for the b . 0 portion of the curve. a complex plane for the variable z 5 v 1 iu, these two
The correct behavior is deduced by considering the points can be viewed as branch points that are connected
x R 0 limit. In this limit, b is nonnegative along the entire to each other by a cut. The branch cut chosen here is the
d 5 0 curve. We therefore insist on smooth behavior across curve u6

d between these two points.
the boundary in this limit and extend this behavior to other With these criteria, the function s1 is given by

(d . 0) (27a)s1 5 Ïd ln Ua 2 bÏd
a 1 bÏdU

(27b)5 Ï2d H2 arc tan SbÏ2d
a D2 fJ 1

d , 0, b2ud u , a2

a . 0, b , 0 f 5 0

a , 0 f 5 2f

a . 0, b . 0 f 5 4f
2

(27c)5 Ï2d H22 arc tan S a
bÏ2d

D2 fJ 1
d , 0, a2 , b2ud u

b , 0 f 5 f

b . 0 f 5 3f
2.

V. SPECIAL CASES

Equations (17), (18), and (27) provide the closed form
solution of the six-dimensional integral defining L(kF , k9,
k0). Although these equations are valid for all values of
its variables, there are certain situations which are compu-
tationally awkward. Individual terms have divergences
which are canceled by divergences in other terms. Also,
situations where the numerator and denominator of a term
vanish at the same point are encountered. For computa-
tional work, it is necessary to identify these situations and
to evaluate the function properly when they occur.

Consider the function l(x, x9, x 0) of Eq. (18). Whenever
any of the variables is equal to the sum of the other two,
the quantity p appearing in the denominator vanishes. In

FIG. 2. Behavior of the parameters a, b, and d in the (u, v)-plane
such cases, the numerator also vanishes and a finite resultfor x 5 0.88. The region where d , 0 is represented by the slashed region.
is obtained by using the L’Hopital rule. For specificity,The region where a , 0 is represented by a cross-hatched region. The

curve where b 5 0 is shown by a dashed line. assume that x0 5 x 1 x9. Then
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Analogous relations cover the cases where x9 5 1 or x0 5
l(x, x9, x 1 x9) 5

f
4xx9(x 1 x9) H(1 2 x2) ln Ux 1 1

x 2 1U 1. If two variables are equal to one, for instance if x 5
x9 5 1, then

1 (1 2 x92) ln Ux9 1 1
x9 2 1U (28)

l(1, 1, x0) 5
f

x0(x02 2 4) H(x0 2 2) ln Ux0 1 1
x0 2 1U

(32)
2 (1 2 (x 1 x9)2) ln U(x 1 x9) 1 1

(x 1 x9) 2 1UJ.
2 x0 ln U16(x02 2 1)

x04 UJ.

A similar result holds when x or x9 is equal to the sum of
the other variables. Finally, if all three variables equal one,

This expression must be modified in the special case
that one of the variables is equal to zero. Because of the l(1, 1, 1) 5 2f ln 2. (33)
triangle inequality, the other two variables must be equal
to each other. Suppose that x0 5 0. Then x9 5 x and we get VI. CONCLUSIONS

The function defined by Eq. (1) has been evaluated in
closed form. The important equations for computationall(x, x, 0) 5

f
2x

ln Ux 1 1
x 2 1U. (29)

work are Eqs. (17), (18), and (27). Several special cases
are enumerated in Eqs. (28)–(33). A program was written
to evaluate these quantities and was used for the computa-If all three variables are equal to zero, this simplifies to
tion of the electron density of the embedded atom. As
expected, the use of this program significantly expedited

l(0, 0, 0) 5 f. (30) the computations. The results of these calculations are to
be reported in another paper [1].
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diverge. The first term in Eq. (18) diverges when x 5 61. REFERENCES
Likewise, the second term diverges when x9 5 61 and the

1. G. G. Hoffman, The application of second-order multiple scatteringthird when x0 5 61. The final term is more complicated,
theory to the embedded atom (unpublished).but it can be shown to diverge only at the same points.

2. N. H. March and A. M. Murray, Proc. R. Soc. Lond. A 261, 1191Further, the divergence of the last term precisely cancels
(1961).

any divergence in the first three. For x 5 1, it is readily
3. G. G. Hoffman and L. R. Pratt, Proc. R. Soc. Lond. A 435, 245 (1991).

worked out that
4. L. R. Pratt, G. G. Hoffman, and R. A. Harris, J. Chem. Phys. 88,

1818 (1988).

5. G. G. Hoffman and L. R. Pratt, in Proceedings of the International
l(1, x9, x0) 5

f
((x9 1 x0)2 2 1)(1 2 (x9 2 x0)2) Workshop on Quantum Simulation of Condensed Matter Phenomena,

edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore,
1991), p. 105.H(x02 2 x92 1 1)x9 ln Ux9 1 1

x9 2 1U
(31)

6. G. G. Hoffman and L. R. Pratt, Mol. Phys. 82, 245 (1994).

7. M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).

8. H. A. Antosiewicz, in Handbook of Mathematical Functions, edited
by M. Abramowitz and I. A. Stegun (Dover, New York, 1965),1 (x92 2 x02 1 1)x0 ln Ux0 1 1

x0 2 1U Eq. (10.1.14).

9. See, for example, G. F. Carrier, M. Krook, and C. E. Pearson, Func-
tions of a Complex Variable (McGraw–Hill, New York, 1966), p. 86.1 (x92 1 x02 2 1) ln U4(x92 2 1)(x02 2 1)

(x92 1 x02 2 1)2 UJ.
10. Maple, version V, Waterloo Maple Software.


